Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Cerium triiodate, $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$

Xue-An Chen,* Li Zhang, Xin-An Chang, He-Gui Zang and Wei-Qiang Xiao

College of Materials Science and Engineering, Beijing University of Technology, Ping Le Yuan 100, Beijing 100022, People's Republic of China
Correspondence e-mail: xu_jiang_2002@yahoo.com

Received 22 February 2005
Accepted 6 April 2005
Online 13 May 2005

The crystal structure of $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$ consists of one-dimensional chains of edge-sharing CeO_{9} polyhedra which are crosslinked into two-dimensional layers through bridging IO_{3}^{-}groups. The layers are held together via long I $\cdots \mathrm{O}$ contacts, resulting in an extended three-dimensional network. The $\mathrm{I}-\mathrm{O}$ bond distances and $\mathrm{O}-\mathrm{I}-\mathrm{O}$ angles are normal, lying in the ranges 1.806 (4)-1.846 (4) \AA and $89.9(2)-100.9$ (2) ${ }^{\circ}$, respectively. The three crystallographically independent iodate groups all show different coordination modes.

Comment

Metal iodates are of considerable interest because some of these compounds exhibit piezoelectric and pyroelectric effects, and they have potential applications in secondharmonic generation (Morosin et al., 1973). $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$ was previously synthesized by Abrahams et al. (1976), who predicted it to be isostructural with $\operatorname{Gd}\left(\mathrm{IO}_{3}\right)_{3}$ (Liminga et al., 1977), in space group $P 2_{1} / a$, with $a=13.56(2) \AA, b=$ 8.565 (9) $\AA, c=7.214$ (12) $\AA, \beta=99.7$ (3) ${ }^{\circ}$ and $V=826$ (2) \AA^{3}. Recently, Douglas et al. (2004) re-investigated the rare earth iodates and reported the lattice constants of all anhydrous $4 f$-iodates, except for those of $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$. They found that $\mathrm{Ln}\left(\mathrm{IO}_{3}\right)_{3}$ compounds (Ln is $\mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Ho}$ or Er) crystallize in a $\mathrm{Gd}\left(\mathrm{IO}_{3}\right)_{3}$-type structure. In the course of our research on novel iodate non-linear optical (NLO) materials, we have obtained single crystals of $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$. Our X-ray structural analysis indicated that the newly prepared $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$ is a new polymorph, with cell dimensions different from those given by Abrahams et al. We report the crystal structure here.

In the structure of $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$, each Ce^{3+} ion is coordinated to nine O atoms in a distorted monocapped square-antiprismatic geometry, as shown in Fig. 1. The $\mathrm{Ce}-\mathrm{O}$ distances of 2.420 (4) -2.809 (5) \AA (average $2.556 \AA$; Table 1) are very reasonable when compared with the ranges 2.427 (3)2.803 (3) A (average $2.536 \AA$) in $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Junk et al., 1999) and 2.496 (3) -2.519 (3) \AA (average $2.511 \AA$) in $\mathrm{Ce}-$ $\left(\mathrm{HSO}_{4}\right)_{3}$ (Wickleder, 1998), all featuring nine-coordinate Ce.

The CeO_{9} polyhedra share edges with each other to form zigzag chains parallel to the b axis (Fig. 2). There are two sets of $\mathrm{Ce} \cdots \mathrm{Ce}$ distances within the chains, viz. 4.2878 (7) and 4.5070 (7) A. The longer $\mathrm{Ce}^{\mathrm{i}} \cdots \mathrm{Ce}^{\mathrm{ii}}$ contacts are associated with pairs of Ce atoms double-bridged through $\mathrm{I}_{3} \mathrm{O}_{3}^{-}$groups (sharing the $\mathrm{O} 9 \cdots \mathrm{O} 9^{\mathrm{iii}}$ edge), while the shorter ones $\left(\mathrm{Ce} \cdots \mathrm{Ce}^{\mathrm{i}}\right)$ are those involved in the two bridging ${\mathrm{I} 2 \mathrm{O}_{3}^{-}}$and two bridging $\mathrm{I3O}_{3}^{-}$groups (sharing the $\mathrm{O} 6 \cdots \mathrm{O}^{\mathrm{i}}$ edge) [symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, 1+y, z$; (iii) $1-x, 2-y, 1-z]$. These chains are crosslinked by I_{3}^{-} groups via μ_{2}-bridging O atoms, resulting in a two-dimensional layer parallel to the (101) plane. Adjacent layers are further connected together through long I ...O contacts $[\mathrm{I} 2 \cdots \mathrm{O} 2=2.779(5) \AA, \mathrm{I} 2 \cdots \mathrm{O} 5=2.390(5) \AA, \mathrm{I} 3 \cdots \mathrm{O} 2=$ 2.738 (5) \AA and $\mathrm{I} 3 \cdots \mathrm{O} 7=2.851$ (5) \AA], giving rise to an extended three-dimensional network.

Figure 1
The coordination geometry about the Ce atom. The double-shaded circle denotes a Ce atom and open circles denote O atoms. The monocapped square antiprism is indicated by thin lines. See Table 1 for symmetry codes.

Figure 2
The $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$ layer parallel to the (101) plane, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) $1-x$, $1-y, 1-z$; (ii) $x, 1+y, z$; (iii) $1-x, 2-y, 1-z$.]

There are three crystallographically unique iodate groups, which adopt different coordination modes toward Ce^{3+} ions (Fig. 2). Each I_{3}^{-}group is a bidentate ligand bonded to two Ce^{3+} centres via two $\mu_{2}-\mathrm{O}$ atoms, each $\mathrm{I}_{2} \mathrm{O}_{3}^{-}$group functions as a tridentate ligand, chelating one Ce^{3+} and coordinated to a second Ce^{3+} ion through a $\mu_{3}-\mathrm{O}$ atom, while each of the $\mathrm{I}_{3} \mathrm{O}_{3}^{-}$ groups acts as a tetradentate ligand that chelates one Ce^{3+} centre and simultaneously binds the other two via a $\mu_{2}-\mathrm{O}$ and a $\mu_{3}-\mathrm{O}$ atom, respectively. Despite the difference in the coordination schemes of the iodate groups, the $\mathrm{I}-\mathrm{O}$ bond lengths of 1.806 (4)-1.846 (4) \AA and the $\mathrm{O}-\mathrm{I}-\mathrm{O}$ angles of 89.9 (2)-100.9 (2) ${ }^{\circ}$ show no particular distortions and are within the ranges observed previously for inorganic iodates (Douglas et al., 2004). Bond-valence-sum (Brown \& Altermatt, 1985) calculations give values of 3.14 for Ce and 4.74 4.93 for I atoms, in reasonable agreement with their expected formal valences.

The crystal structure of $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$ presented here is different from that previously reported by Abrahams et al. (1976). The latter contains a three-dimensional network consisting of irregular CeO_{8} polyhedra bridged by bi- and tridentate IO_{3}^{-} ligands. It is the difference in the coordination modes of the iodate groups, as well as the variation in the Ce^{3+} coordination geometry, that is responsible for the structural versatility of $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$.

Experimental

The title compound was synthesized using hydrothermal techniques. All reagents were of analytical grade. $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.106 \mathrm{~g}$, $0.244 \mathrm{mmol}), \mathrm{I}_{2} \mathrm{O}_{5}(0.287 \mathrm{~g}, 0.860 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ were sealed in a 25 ml Teflon-lined autoclave. This was heated in an oven at 443 K for one week under autogenously generated pressure, then cooled slowly to room temperature. The product consisted of yellow blockshaped crystals, with largest dimensions of $0.6 \times 0.8 \times 1.0 \mathrm{~mm}$, covered by a colourless liquid. The final pH of the reaction system was about 1.0. The crystals were isolated in about 84% yield (based on Ce) by washing the reaction product with deionized water and anhydrous ethanol, followed by drying with anhydrous acetone. Powder X-ray diffraction analysis revealed that the product is a single phase of $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$ and no lines due to impurity phases were observed. In previous work (Douglas et al., 2004), $\mathrm{Ln}\left(\mathrm{IO}_{3}\right)_{3}$ compounds (Ln is $\mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}$, Ho or Er) were prepared by decomposition of the corresponding periodates under hydrothermal conditions. Here, the Ce analogue was synthesized directly from the hydrothermal reaction of $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3}$ with $\mathrm{I}_{2} \mathrm{O}_{5} . \mathrm{I}_{2} \mathrm{O}_{5}$ was found to play an important role in the crystal growth of $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$. The replacement of $\mathrm{I}_{2} \mathrm{O}_{5}$ by $\mathrm{H}_{5} \mathrm{IO}_{6}$ as an iodine source did not generate any crystalline products, instead forming lumps of amorphous gel.

Crystal data

$\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$
$M_{r}=664.82$
Monoclinic, $P 2_{1} / n$
$a=8.9188(10) \AA$
$b=5.9619$ (11) \AA
$c=15.4047$ (12) \AA
$\beta=96.974$ (8) ${ }^{\circ}$
$V=813.05(19) \AA^{3}$
$Z=4$

Table 1
Selected geometric parameters (\AA).

$\mathrm{Ce}-\mathrm{O}^{\mathrm{i}}$	$2.420(4)$	$\mathrm{Ce}-\mathrm{O} 7^{\mathrm{iiii}}$	$2.529(5)$
$\mathrm{Ce}-\mathrm{O}^{\mathrm{ii}}$	$2.480(4)$	$\mathrm{Ce}-\mathrm{O} 4$	$2.567(4)$
$\mathrm{Ce}-\mathrm{O} 8$	$2.485(4)$	$\mathrm{Ce}-\mathrm{O} 6$	$2.700(5)$
$\mathrm{Ce}-\mathrm{O} 9^{\mathrm{i}}$	$2.506(4)$	$\mathrm{Ce}-\mathrm{O} 9^{\mathrm{iii}}$	$2.809(5)$
$\mathrm{Ce}-\mathrm{O} 1$	$2.507(4)$		

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $x, y-1, z$.

Data collection

Rigaku AFC-7R diffractometer $2 \theta / \omega$ scans
Absorption correction: ψ scan
(Kopfmann \& Huber, 1968)
$T_{\min }=0.201, T_{\max }=0.420$
4133 measured reflections
3582 independent reflections
3317 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=35.0^{\circ}$
$h=0 \rightarrow 14$
$k=0 \rightarrow 9$
$l=-24 \rightarrow 24$
3 standard reflections
every 150 reflections
intensity variation: $\pm 1.7 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.087$
$S=1.17$
3582 reflections
119 parameters

$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0357 P)^{2}\right.$
$\quad \quad+9.4569 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
(\Delta / \sigma)_{\max }<0.001
$$

$\Delta \rho_{\max }=2.86 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.67 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0060 (2)
119 parameters

Direct phase determination yielded the positions of the Ce and I atoms. The remaining O atoms were located in subsequent difference Fourier syntheses. All atoms were refined anisotropically. The highest residual electron-density peaks were located $0.69 \AA$ from the Ce atoms.

Data collection: Rigaku/AFC Diffractometer Control Software (Rigaku, 1994); cell refinement: Rigaku/AFC Diffractometer Control Software; data reduction: Rigaku/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SCHAKAL92 (Keller, 1992); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1123). Services for accessing these data are described at the back of the journal.

References

Abrahams, S. C., Bernstein, J. L. \& Nassau, K. (1976). J. Solid State Chem. 16, 173-184.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Douglas, P., Hector, A. L., Levason, W., Light, M. E., Matthews, M. L. \& Webster, M. (2004). Z. Anorg. Allg. Chem. 630, 479-483.
Junk, P. C., Kepert, C. J., Skelton, B. W. \& White, A. H. (1999). Aust. J. Chem. 52, 601-615.
Keller, E. (1992). SCHAKAL92. University of Freiburg, Germany.
Kopfmann, G. \& Huber, R. (1968). Acta Cryst. A24, 348-351.
Liminga, R., Abrahams, S. C. \& Bernstein, J. L. (1977). J. Chem. Phys. 67, 1015-1023.
Morosin, B., Bergman, J. G. \& Crane, G. R. (1973). Acta Cryst. B29, 1067-1072.
Rigaku (1994). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wickleder, M. S. (1998). Z. Anorg. Allg. Chem. 624, 1583-1587.

